
Chapter 5

Probability

In Chapter 2, I said that a probability is a frequency expressed as a fraction
of the sample size. That’s one definition of probability, but it’s not the only
one. In fact, the meaning of probability is a topic of some controversy.

We’ll start with the uncontroversial parts and work our way up. There is
general agreement that a probability is a real value between 0 and 1 that
is intended to be a quantitative measure corresponding to the qualitative
notion that some things are more likely than others.

The “things” we assign probabilities to are called events. If E represents
an event, then P(E) represents the probability that E will occur. A situation
where E might or might not happen is called a trial.

As an example, suppose you have a standard six-sided die1 and want to
know the probability of rolling a 6. Each roll is a trial. Each time a 6 appears
is considered a success; other trials are considered failures. These terms are
used even in scenarios where “success” is bad and “failure” is good.

If we have a finite sample of n trials and we observe s successes, the prob-
ability of success is s/n. If the set of trials is infinite, defining probabilities
is a little trickier, but most people are willing to accept probabilistic claims
about a hypothetical series of identical trials, like tossing a coin or rolling a
die.

We start to run into trouble when we talk about probabilities of unique
events. For example, we might like to know the probability that a candi-
date will win an election. But every election is unique, so there is no series
of identical trials to consider.

1“Die” is the singular of “dice”.
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In cases like this some people would say that the notion of probability does
not apply. This position is sometimes called frequentism because it defines
probability in terms of frequencies. If there is no set of identical trials, there
is no probability.

Frequentism is philosophically safe, but frustrating because it limits the
scope of probability to physical systems that are either random (like atomic
decay) or so unpredictable that we model them as random (like a tumbling
die). Anything involving people is pretty much off the table.

An alternative is Bayesianism, which defines probability as a degree of be-
lief that an event will occur. By this definition, the notion of probability
can be applied in almost any circumstance. One difficulty with Bayesian
probability is that it depends on a person’s state of knowledge; people with
different information might have different degrees of belief about the same
event. For this reason, many people think that Bayesian probabilities are
more subjective than frequency probabilities.

As an example, what is the probability that Thaksin Shinawatra is the Prime
Minister of Thailand? A frequentist would say that there is no probability
for this event because there is no set of trials. Thaksin either is, or is not, the
PM; it’s not a question of probability.

In contrast, a Bayesian would be willing to assign a probability to this
event based on his or her state of knowledge. For example, if you re-
member that there was a coup in Thailand in 2006, and you are pretty sure
Thaksin was the PM who was ousted, you might assign a probability like
0.1, which acknowledges the possibility that your recollection is incorrect,
or that Thaksin has been reinstated.

If you consult Wikipedia, you will learn that Thaksin is not the PM of Thai-
land (at the time I am writing). Based on this information, you might revise
your probability estimate to 0.01, reflecting the possibility that Wikipedia is
wrong.

5.1 Rules of probability
For frequency probabilities, we can derive rules that relate probabilities of
different events. Probably the best known of these rules is

P(A and B) = P(A) P(B) Warning: not always true!

where P(A and B) is the probability that events A and B both occur. This
formula is easy to remember; the only problem is that it is not always true.
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This formula only applies if A and B are independent, which means that if
I know A occurred, that doesn’t change the probability of B, and vice versa.

For example, if A is tossing a coin and getting heads, and B is rolling a die
and getting 1, A and B are independent, because the coin toss doesn’t tell
me anything about the die roll.

But if I roll two dice, and A is getting at least one six, and B is getting two
sixes, A and B are not independent, because if I know that A occurred, the
probability of B is higher, and if I know B occurred, the probability of A is
1.

When A and B are not independent, it is often useful to compute the condi-
tional probability, P(A|B), which is the probability of A given that we know
B occurred:

P(A|B) = P(A and B)
P(B)

From that we can derive the general relation

P(A and B) = P(A) P(B|A)

This might not be as easy to remember, but if you translate it into English
it should make sense: “The chance of both things happening is the chance
that the first one happens, and then the second one given the first.”

There is nothing special about the order of events, so we could also write

P(A and B) = P(B) P(A|B)

These relationships hold whether A and B are independent or not. If they
are independent, then P(A|B) = P(A), which gets us back where we started.

Because all probabilities are in the range 0 to 1, it is easy to show that

P(A and B) ≤ P(A)

To picture this, imagine a club that only admits people who satisfy some
requirement, A. Now suppose they add a new requirement for member-
ship, B. It seems obvious that the club will get smaller, or stay the same
if it happens that all the members satisfy B. But there are some scenar-
ios where people are surprisingly bad at this kind of analysis. For exam-
ples and discussion of this phenomenon, see http://wikipedia.org/wiki/

Conjunction_fallacy.

Exercise 5.1 If I roll two dice and the total is 8, what is the chance that one
of the dice is a 6?
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Exercise 5.2 If I roll 100 dice, what is the chance of getting all sixes? What is
the chance of getting no sixes?

Exercise 5.3 The following questions are adapted from Mlodinow, The
Drunkard’s Walk.

1. If a family has two children, what is the chance that they have two
girls?

2. If a family has two children and we know that at least one of them is
a girl, what is the chance that they have two girls?

3. If a family has two children and we know that the older one is a girl,
what is the chance that they have two girls?

4. If a family has two children and we know that at least one of them is
a girl named Florida, what is the chance that they have two girls?

You can assume that the probability that any child is a girl is 1/2, and that
the children in a family are independent trials (in more ways than one). You
can also assume that the percentage of girls named Florida is small.

5.2 Monty Hall

The Monty Hall problem might be the most contentious question in the
history of probability. The scenario is simple, but the correct answer is so
counter-intuitive that many people just can’t accept it, and many smart peo-
ple have embarrassed themselves not just by getting it wrong but by argu-
ing the wrong side, aggressively, in public.

Monty Hall was the original host of the game show Let’s Make a Deal. The
Monty Hall problem is based on one of the regular games on the show. If
you are on the show, here’s what happens:

• Monty shows you three closed doors and tells you that there is a prize
behind each door: one prize is a car, the other two are less valuable
prizes like peanut butter and fake finger nails. The prizes are arranged
at random.

• The object of the game is to guess which door has the car. If you guess
right, you get to keep the car.
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• So you pick a door, which we will call Door A. We’ll call the other
doors B and C.

• Before opening the door you chose, Monty likes to increase the sus-
pense by opening either Door B or C, whichever does not have the
car. (If the car is actually behind Door A, Monty can safely open B or
C, so he chooses one at random).

• Then Monty offers you the option to stick with your original choice or
switch to the one remaining unopened door.

The question is, should you “stick” or “switch” or does it make no differ-
ence?

Most people have the strong intuition that it makes no difference. There are
two doors left, they reason, so the chance that the car is behind Door A is
50%.

But that is wrong. In fact, the chance of winning if you stick with Door A is
only 1/3; if you switch, your chances are 2/3. I will explain why, but I don’t
expect you to believe me.

The key is to realize that there are three possible scenarios: the car is behind
Door A, B or C. Since the prizes are arranged at random, the probability of
each scenario is 1/3.

If your strategy is to stick with Door A, then you will win only in Scenario
A, which has probability 1/3.

If your strategy is to switch, you will win in either Scenario B or Scenario C,
so the total probability of winning is 2/3.

If you are not completely convinced by this argument, you are in good com-
pany. When a friend presented this solution to Paul Erdős, he replied, “No,
that is impossible. It should make no difference.2”

No amount of argument could convince him. In the end, it took a computer
simulation to bring him around.

Exercise 5.4 Write a program that simulates the Monty Hall problem and
use it to estimate the probability of winning if you stick and if you switch.

Then read the discussion of the problem at http://wikipedia.org/wiki/
Monty_Hall_problem.

2See Hoffman, The Man Who Loved Only Numbers, page 83.
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Which do you find more convincing, the simulation or the arguments, and
why?

Exercise 5.5 To understand the Monty Hall problem, it is important to real-
ize that by deciding which door to open, Monty is giving you information.
To see why this matters, imagine the case where Monty doesn’t know where
the prizes are, so he chooses Door B or C at random.

If he opens the door with the car, the game is over, you lose, and you don’t
get to choose whether to switch or stick.

Otherwise, are you better off switching or sticking?

5.3 Poincaré

Henri Poincaré was a French mathematician who taught at the Sorbonne
around 1900. The following anecdote about him is probably fabricated, but
it makes an interesting probability problem.

Supposedly Poincaré suspected that his local bakery was selling loaves of
bread that were lighter than the advertised weight of 1 kg, so every day for
a year he bought a loaf of bread, brought it home and weighed it. At the end
of the year, he plotted the distribution of his measurements and showed that
it fit a normal distribution with mean 950 g and standard deviation 50 g. He
brought this evidence to the bread police, who gave the baker a warning.

For the next year, Poincaré continued the practice of weighing his bread
every day. At the end of the year, he found that the average weight was
1000 g, just as it should be, but again he complained to the bread police,
and this time they fined the baker.

Why? Because the shape of the distribution was asymmetric. Unlike the
normal distribution, it was skewed to the right, which is consistent with
the hypothesis that the baker was still making 950 g loaves, but deliberately
giving Poincaré the heavier ones.

Exercise 5.6 Write a program that simulates a baker who chooses n loaves
from a distribution with mean 950 g and standard deviation 50 g, and gives
the heaviest one to Poincaré. What value of n yields a distribution with
mean 1000 g? What is the standard deviation?

Compare this distribution to a normal distribution with the same mean and
the same standard deviation. Is the difference in the shape of the distribu-
tion big enough to convince the bread police?
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Exercise 5.7 If you go to a dance where partners are paired up randomly,
what percentage of opposite sex couples will you see where the woman is
taller than the man?

In the BRFSS (see Section 4.5), the distribution of heights is roughly normal
with parameters µ = 178 cm and σ2 = 59.4 cm for men, and µ = 163 cm and
σ2 = 52.8 cm for women.

As an aside, you might notice that the standard deviation for men is higher
and wonder whether men’s heights are more variable. To compare vari-
ability between groups, it is useful to compute the coefficient of variation,
which is the standard deviation as a fraction of the mean, σ/µ. By this mea-
sure, women’s heights are slightly more variable.

5.4 Another rule of probability

If two events are mutually exclusive, that means that only one of them can
happen, so the conditional probabilities are 0:

P(A|B) = P(B|A) = 0

In this case it is easy to compute the probability of either event:

P(A or B) = P(A) + P(B) Warning: not always true.

But remember that this only applies if the events are mutually exclusive. In
general the probability of A or B or both is:

P(A or B) = P(A) + P(B) − P(A and B)

The reason we have to subtract off P(A and B) is that otherwise it gets
counted twice. For example, if I flip two coins, the chance of getting at
least one tails is 1/2 + 1/2− 1/4. I have to subtract 1/4 because otherwise I
am counting heads-heads twice. The problem becomes even clearer if I toss
three coins.

Exercise 5.8 If I roll two dice, what is the chance of rolling at least one 6?

Exercise 5.9 What is the general formula for the probability of A or B but
not both?
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5.5 Binomial distribution

If I roll 100 dice, the chance of getting all sixes is (1/6)100. And the chance
of getting no sixes is (5/6)100.

Those cases are easy, but more generally, we might like to know the chance
of getting k sixes, for all values of k from 0 to 100. The answer is the bino-
mial distribution, which has this PMF:

PMF(k) =
(

n
k

)
pk(1− p)n−k

where n is the number of trials, p is the probability of success, and k is the
number of successes.

The binomial coefficient is pronounced “n choose k”, and it can be com-
puted directly like this: (

n
k

)
=

n!
k!(n− k)!

Or recursively like this (
n
k

)
=

(
n− 1

k

)
+

(
n− 1
k− 1

)
with two base cases: if n = 0 the result is 0; if k = 0 the result is 1. If you
download http://thinkstats.com/thinkstats.py you will see a function
named Binom that computes the binomial coefficient with reasonable effi-
ciency.

Exercise 5.10 If you flip a coin 100 times, you expect about 50 heads, but
what is the probability of getting exactly 50 heads?

5.6 Streaks and hot spots

People do not have very good intuition for random processes. If you ask
people to generate “random” numbers, they tend to generate sequences
that are random-looking, but actually more ordered than real random se-
quences. Conversely, if you show them a real random sequence, they tend
to see patterns where there are none.

An example of the second phenomenon is that many people believe in
“streaks” in sports: a player that has been successful recently is said to have
a “hot hand;” a player that has been unsuccessful is “in a slump.”
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Statisticians have tested these hypotheses in a number of sports, and the
consistent result is that there is no such thing as a streak3. If you assume that
each attempt is independent of previous attempts, you will see occasional
long strings of successes or failures. These apparent streaks are not suffi-
cient evidence that there is any relationship between successive attempts.

A related phenomenon is the clustering illusion, which is the tendency
to see clusters in spatial patterns that are actually random (see http://

wikipedia.org/wiki/Clustering_illusion).

To test whether an apparent cluster is likely to be meaningful, we can simu-
late the behavior of a random system to see whether it is likely to produce a
similar cluster. This process is called Monte Carlo simulation because gen-
erating random numbers is reminiscent of casino games (and Monte Carlo
is famous for its casino).

Exercise 5.11 If there are 10 players in a basketball game and each one takes
15 shots during the course of the game, and each shot has a 50% probability
of going in, what is the probability that you will see, in a given game, at
least one player who hits 10 shots in a row? If you watch a season of 82
games, what are the chances you will see at least one streak of 10 hits or
misses?

This problem demonstrates some strengths and weaknesses of Monte Carlo
simulation. A strength is that it is often easy and fast to write a simulation,
and no great knowledge of probability is required. A weakness is that es-
timating the probability of rare events can take a long time! A little bit of
analysis can save a lot of computing.

Exercise 5.12 In 1941 Joe DiMaggio got at least one hit in 56 consecutive
games4. Many baseball fans consider this streak the greatest achievement
in any sport in history, because it was so unlikely.

Use a Monte Carlo simulation to estimate the probability that any player in
major league baseball will have a hitting streak of 57 or more games in the
next century.

Exercise 5.13 A cancer cluster is defined by the Centers for Disease Control
(CDC) as “greater-than-expected number of cancer cases that occurs within
a group of people in a geographic area over a period of time.5”

3For example, see Gilovich, Vallone and Tversky, “The hot hand in basketball: On the
misperception of random sequences,” 1985.

4See http://wikipedia.org/wiki/Hitting_streak.
5From http://cdc.gov/nceh/clusters/about.htm.
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Many people interpret a cancer cluster as evidence of an environmental
hazard, but many scientists and statisticians think that investigating can-
cer clusters is a waste of time6. Why? One reason (among several) is that
identifying cancer clusters is a classic case of the Sharpshooter Fallacy (see
http://wikipedia.org/wiki/Texas_sharpshooter_fallacy).

Nevertheless, when someone reports a cancer cluster, the CDC is obligated
to investigate. According to their web page:

“Investigators develop a ‘case’ definition, a time period of con-
cern, and the population at risk. They then calculate the ex-
pected number of cases and compare them to the observed num-
ber. A cluster is confirmed when the observed/expected ratio is
greater than 1.0, and the difference is statistically significant.”

1. Suppose that a particular cancer has an incidence of 1 case per thou-
sand people per year. If you follow a particular cohort of 100 peo-
ple for 10 years, you would expect to see about 1 case. If you saw
two cases, that would not be very surprising, but more than than two
would be rare.

Write a program that simulates a large number of cohorts over a 10
year period and estimates the distribution of total cases.

2. An observation is considered statistically significant if its probability
by chance alone, called a p-value, is less than 5%. In a cohort of 100
people over 10 years, how many cases would you have to see to meet
this criterion?

3. Now imagine that you divide a population of 10000 people into 100
cohorts and follow them for 10 years. What is the chance that at least
one of the cohorts will have a “statistically significant” cluster? What
if we require a p-value of 1%?

4. Now imagine that you arrange 10000 people in a 100 ×100 grid and
follow them for 10 years. What is the chance that there will be at least
one 10 ×10 block anywhere in the grid with a statistically significant
cluster?

5. Finally, imagine that you follow a grid of 10000 people for 30 years.
What is the chance that there will be a 10-year interval at some point
with a 10×10 block anywhere in the grid with a statistically significant
cluster?

6See Gawande, “The Cancer Cluster Myth,” New Yorker, Feb 8, 1997.
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5.7 Bayes’s theorem

Bayes’s theorem is a relationship between the conditional probabilities of
two events. A conditional probability, often written P(A|B) is the proba-
bility that Event Awill occur given that we know that Event Bhas occurred.
Bayes’s theorem states:

P(A|B) = P(B|A)P(A)

P(B)

To see that this is true, it helps to write P(A and B), which is the probability
that A and B occur

P(A and B) = P(A) P(B|A)

But it is also true that

P(A and B) = P(B) P(A|B)

So

P(B) P(A|B) = P(A) P(B|A)

Dividing through by P(B) yields Bayes’s theorem7.

Bayes’s theorem is often interpreted as a statement about how a body of
evidence, E, affects the probability of a hypothesis, H:

P(H|E) = P(H)
P(E|H)

P(E)

In words, this equation says that the probability of H after you have seen
E is the product of P(H), which is the probability of H before you saw the
evidence, and the ratio of P(E|H), the probability of seeing the evidence
assuming that H is true, and P(E), the probability of seeing the evidence
under any circumstances (H true or not).

This way of reading Bayes’s theorem is called the “diachronic” interpreta-
tion because it describes how the probability of a hypothesis gets updated
over time, usually in light of new evidence. In this context, P(H) is called
the prior probability and P(H|E) is called the posterior. P(E|H) is the like-
lihood of the evidence, and P(E) is the normalizing constant.

7See http://wikipedia.org/wiki/Q.E.D.!
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A classic use of Bayes’s theorem is the interpretation of clinical tests. For ex-
ample, routine testing for illegal drug use is increasingly common in work-
places and schools (See http://aclu.org/drugpolicy/testing.). The com-
panies that perform these tests maintain that the tests are sensitive, which
means that they are likely to produce a positive result if there are drugs (or
metabolites) in a sample, and specific, which means that they are likely to
yield a negative result if there are no drugs.

Studies from the Journal of the American Medical Association8 estimate
that the sensitivity of common drug tests is about 60% and the specificity
is about 99%.

Now suppose these tests are applied to a workforce where the actual rate
of drug use is 5%. Of the employees who test positive, how many of them
actually use drugs?

In Bayesian terms, we want to compute the probability of drug use given a
positive test, P(D|E). By Bayes’s theorem:

P(D|E) = P(D)
P(E|D)

P(E)

The prior, P(D) is the probability of drug use before we see the outcome of
the test, which is 5%. The likelihood, P(E|D), is the probability of a positive
test assuming drug use, which is the sensitivity.

The normalizing constant, P(E) is a little harder to evaluate. We have to
consider two possibilities, P(E|D) and P(E|N), where N is the hypothesis
that the subject of the test does not use drugs:

P(E) = P(D) P(E|D) + P(N) P(E|N)

The probability of a false positive, P(E|N), is the complement of the speci-
ficity, or 1%.

Putting it together, we have

P(D|E) = P(D)P(E|D)

P(D)P(E|D) + P(N)P(E|N)

Plugging in the given values yields P(D|E) = 0.76, which means that of the
people who test positive, about 1 in 4 is innocent.

8I got these numbers from Gleason and Barnum, “Predictive Probabilities In Employee
Drug-Testing,” at http://piercelaw.edu/risk/vol2/winter/gleason.htm.
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Exercise 5.14 Write a program that takes the actual rate of drug use, and the
sensitivity and specificity of the test, and uses Bayes’s theorem to compute
P(D|E).

Suppose the same test is applied to a population where the actual rate of
drug use is 1%. What is the probability that someone who tests positive is
actually a drug user?

Exercise 5.15 This exercise is from http://wikipedia.org/wiki/Bayesian_

inference.

“Suppose there are two full bowls of cookies. Bowl 1 has 10
chocolate chip and 30 plain cookies, while Bowl 2 has 20 of each.
Our friend Fred picks a bowl at random, and then picks a cookie
at random. The cookie turns out to be a plain one. How probable
is it that Fred picked it out of Bowl 1?”

Exercise 5.16 The blue M&M was introduced in 1995. Before then, the color
mix in a bag of plain M&Ms was (30% Brown, 20% Yellow, 20% Red, 10%
Green, 10% Orange, 10% Tan). Afterward it was (24% Blue , 20% Green,
16% Orange, 14% Yellow, 13% Red, 13% Brown).

A friend of mine has two bags of M&Ms, and he tells me that one is from
1994 and one from 1996. He won’t tell me which is which, but he gives
me one M&M from each bag. One is yellow and one is green. What is the
probability that the yellow M&M came from the 1994 bag?

Exercise 5.17 This exercise is adapted from MacKay, Information Theory, In-
ference, and Learning Algorithms:

Elvis Presley had a twin brother who died at birth. According to the
Wikipedia article on twins:

“Twins are estimated to be approximately 1.9% of the world pop-
ulation, with monozygotic twins making up 0.2% of the total—
and 8% of all twins.”

What is the probability that Elvis was an identical twin?

5.8 Glossary
event: Something that may or may not occur, with some probability.
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trial: One in a series of occasions when an event might occur.

success: A trial in which an event occurs.

failure: A trail in which no event occurs.

frequentism: A strict interpretation of probability that only applies to a se-
ries of identical trials.

Bayesianism: A more general interpretation that uses probability to repre-
sent a subjective degree of belief.

independent: Two events are independent if the occurrence of one does has
no effect on the probability of another.

coefficient of variation: A statistic that measures spread, normalized by
central tendency, for comparison between distributions with different
means.

Monte Carlo simulation: A method of computing probabilities by sim-
ulating random processes (see http://wikipedia.org/wiki/Monte_

Carlo_method).

update: The process of using data to revise a probability.

prior: A probability before a Bayesian update.

posterior: A probability computed by a Bayesian update.

likelihood of the evidence: One of the terms in Bayes’s theorem, the prob-
ability of the evidence conditioned on a hypothesis.

normalizing constant: The denominator of Bayes’s Theorem, used to nor-
malize the result to be a probability.


